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Summary

The influence of attention on visual cortical neurons
has been described in terms of its effect on the struc-
ture of receptive fields (RFs), where multiple stimuli
compete to drive neural responses and ultimately be-
havior. We stimulated the frontal eye field (FEF) of pas-
sively fixating monkeys and produced changes in V4
responses similar to known effects of voluntary atten-
tion. Subthreshold FEF stimulation enhanced visual
responses at particular locations within the RF and al-
tered the interaction between pairs of RF stimuli to fa-
vor those aligned with the activated FEF site. Thus, we
could influence which stimulus drove the responses
of individual V4 neurons. These results suggest that
spatial signals involved in saccade preparation are
used to covertly select among multiple stimuli appear-
ing within the RFs of visual cortical neurons.

Introduction

Only a small fraction of the myriad signals conveyed
to visual cortex can be consciously perceived, remem-
bered, or used to guide behavior. Incoming visual sig-
nals activate competing representations in extrastriate
cortex, and attention provides a means to willfully select
relevant objects. Neurophysiological studies in mon-
keys and functional imaging studies in humans have
established that covert attention enhances representa-
tions in visual cortex (Kastner et al., 1998; Luck et al.,
1997; Moran and Desimone, 1985; Rees et al., 1997;
Reynolds et al., 1999; Reynolds and Desimone, 2003).
For example, in the classic study of Moran and Desi-
mone (1985), it was found that when two stimuli were
presented simultaneously within the receptive fields
(RFs) of single neurons in areas V2, V4, and the inferior
temporal cortex, directing attention to the more effective
stimulus increased neuronal responses as compared to
when attention was directed to the less-effective stimu-
lus. This effect has been interpreted within a framework
in which attention provides a top-down signal that se-
lects particular RF inputs to favor responses to attended
stimuli (Desimone and Duncan, 1995; Reynolds et al.,
1999). Although the effect of attention on extrastriate
responses has been well characterized during the last
twenty years, a signal capable of selecting particular
RF stimuli has not been identified.

Several studies have provided evidence that brain
areas with established roles in the programming of
visually-guided saccadic eye movements, such as the

*Correspondence: tirin@stanford.edu

frontal eye field (FEF; Moore and Fallah, 2001; Moore
and Fallah, 2004), the superior colliculus (SC; Cavanaugh
and Wurtz, 2004; McPeek and Keller, 2004; Muller
et al., 2005), and area LIP (Bisley and Goldberg, 2003;
Bushnell et al., 1981), are causally involved in covert
attention. We recently found that subthreshold micro-
stimulation of the FEF enhances retinotopically corre-
sponding V4 responses to isolated stimuli (Moore and
Armstrong, 2003). This suggests that FEF stimulation
drives covert attention and its neural correlates in visual
cortex (Moore and Armstrong, 2003; Moore et al., 2003).
However, a critical test of this interpretation is whether
microstimulation changes visual RFs in a manner that
reproduces the effects of voluntary attention.

We studied the influence of subthreshold FEF micro-
stimulation on V4 responses in monkeys trained only
to fixate (Figure 1). Recording, stimulation, and align-
ment procedures were as described previously (Moore
and Armstrong, 2003). To test for changes in the weight
of RF inputs, we examined the effect of microstimulation
on V4 responses to oriented-bar stimuli presented to the
RF both singly and in pairs. RF stimuli were presented at
locations that were either spatially aligned or misaligned
with the endpoint of a saccade that could be evoked
from the FEF site, or at both locations simultaneously.
We reasoned that if microstimulation simply amplifies
responses uniformly across the RF, then its effects
should be the same when single stimuli are presented
at either location. However, if instead microstimulation
drives the selection of stimuli located at the saccade
endpoint, then it should only enhance responses in the
aligned condition. Furthermore, FEF stimulation should
also modulate pair responses in a manner similar to
that observed during voluntary attention in trained mon-
keys (Luck et al., 1997; Moran and Desimone, 1985; Rey-
nolds et al., 1999).

Results

Effects with Single RF Stimuli

The effect of FEF stimulation on V4 RF structure was
examined in 49 neurons at 33 FEF sites in two monkeys
(Monkey W—24 neurons, 18 sites; Monkey B—25 neu-
rons, 15 sites). An example experiment is shown in Fig-
ure 2. Electrical stimulation of the FEF site using currents
>35 pA evoked saccades into the lower contralateral
visual field and to the edge of the RF under study. Sub-
threshold microstimulation of this site did not evoke
saccades but produced a transient enhancement of
the V4 response to a stable RF stimulus located at a po-
sition aligned with the endpoint of the FEF saccade vec-
tor (Figure 2, top; paired t test, p < 0.05). When the same
stimulus was presented at another location, still within
the V4 neuron’s RF but misaligned with the evoked sac-
cade endpoint by ~9°, FEF stimulation had no effect on
the neuron’s response (Figure 2, bottom, p > 0.45).
Therefore, response enhancement depended not only
on the presence of an effective stimulus within a RF
that encompassed the saccade endpoint, but also on
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Figure 1. Covert Attention Alters Neuronal Responses to Multiple
Receptive Field Stimuli to Favor the Attended Stimulus

When pairs of stimuli (oriented bars) are presented simultaneously
in the receptive field (RF) of a neuron in extrastriate cortex, visual
responses to the pair fall between the responses to each stimulus
presented in isolation. Directing attention to one of two RF stimuli
(yellow spotlight) increases the influence of that stimulus in deter-
mining the neuron’s response (Luck et al., 1997; Moran and Desi-
mone, 1985; Reynolds et al., 1999). This effect could reflect a plan
to make a saccadic eye movement to the attended stimulus (red
arrow). In this study, we tested whether subthreshold stimulation
of sites within the FEF, an area with a known role in saccade plan-
ning, changes visual RFs in a manner that reproduces the effects
of voluntary attention.

the alignment of the visual stimulus and the saccade
endpoint within the RF.

The confinement of stimulation-driven enhancement
to aligned stimuli indicates that the weight of visual
inputs corresponding to the activated FEF site is
selectively increased. We tested whether this effect held
for the entire population of V4 neurons studied. During
all experiments, the scatter of the evoked saccade end-
points was always considerably less than the size of
the corresponding V4 receptive field (Figure 3A), thus al-
lowing us to present visual stimuli at positions that were
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clearly either aligned or misaligned with the evoked sac-
cade endpoint. The mean separation between the visual
stimulus and the endpoint of the evoked saccade was
0.8° and 7.1° for aligned and misaligned conditions, re-
spectively. We quantified the relative responsiveness
of each V4 neuron to aligned and misaligned stimuli
and examined whether it was altered by subthreshold
FEF stimulation. For each neuron, we computed a posi-
tion selectivity index from its response to an effective
stimulus (normalized response at aligned position minus
normalized response at misaligned position; Figure 3B).
Although there was a range of position selectivity indi-
ces across the sample of V4 neurons, on average the
population was equally responsive to stimuli at aligned
and misaligned positions during control trials (mean =
0.05; t test, p > 0.2). However, following microstimulation
of the FEF site, the average position selectivity index
showed a shift toward the aligned position (mean =
0.24; p < 0.0005). This resulted in a reliable difference
in position selectivity indices between stimulation and
control conditions (paired t test, p < 0.0005), with re-
sponses favoring the aligned position after FEF stimula-
tion. This shift resulted from a response enhancement
during the aligned condition (p < 0.0001) and an absence
of a reliable effect during the misaligned condition (p >
0.6). In fact, only a subset of neurons, those that were
stimulus selective at the misaligned location (n = 17),
were significantly affected by microstimulation during
the misaligned condition. In these cases, responses to
preferred stimuli were suppressed (p < 0.02). Thus, the
overall effect of microstimulation was to increase the
weight of RF inputs at the aligned location.
Subthreshold microstimulation almost never evoked
saccades during the task; however, it nonetheless mea-
surably increased the probability that the monkey would
break fixation, consistent with previous results (Schiller
and Tehovnik, 2001). Whereas the probability of abortive
saccades in the last half of the trial was only 1.4% during

Figure 2. Effect of Subthreshold FEF Stimu-
lation on the Response of a Single V4 Neuron
to RF Stimuli that Were Spatially Aligned or
Misaligned with the Evoked Saccade End-
point

(Left) Electrical stimulation of the FEF site
using currents >35 pA evoked saccades (five
dotted traces) into the lower contralateral vi-
sual field and to the upper edge of the RF of
a single V4 neuron (dashed circle). (Center)
Response histograms show average V4 neu-
ron activity for control conditions (black)
superimposed on stimulation conditions (red).
Rasters show individual spikes for each trial.
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40 Subthreshold FEF stimulation (50 ms train,
18 pA, 200 Hz) late in the trial did not evoke

20 saccades but enhanced V4 responses to a vi-
0 . - sual stimulus presented at the aligned posi-

tion (top). When the same stimulus was pre-
sented to the RF at the misaligned location,
stimulation did not affect the neuron’s re-
sponse (bottom). Responses during FEF stim-
ulation are omitted due to the stimulation
artifact. The time window (70 ms) used for pop-
ulation analyses is shaded in blue. (Right) Bar
graphs show the mean response during the
analysis window for control (black) and stimu-
lation (red) trials. Error bars denote SEM.
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Figure 3. FEF Stimulation and V4 Position Selectivity
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(A) Spread of evoked-saccade endpoints was smaller than the size of the corresponding V4 RF. The evoked-saccade endpoint scatter at each
FEF site is plotted as a function of V4 receptive field size (calculated according to our observations and those of Gattass et al. [1988]).

(B) Comparison of position selectivity during stimulation and control trials. Positive position selectivity values indicate a preference for the
aligned location (a > m), whereas negative values indicate a misaligned location preference (m > a). During control trials, there was no preference
in the population of V4 neurons toward either position (abscissa, black histogram). Subthreshold FEF stimulation shifted the position selectivity
to favor the aligned position (ordinate, red histogram). When stimulation and control position indices are plotted against each other (black dots),
the majority of points fall above the line of unity (open histogram) indicating that microstimulation shifted position selectivity toward the aligned

location. Arrows denote means of black, red, and open distributions.

control conditions, it was increased to 3.3% following
stimulation (chi-square test, p < 0.005). However, the
increased frequency of abortive saccades following mi-
crostimulation was not uniform across visual stimulus
conditions. The probability of evoking an abortive sac-
cade was significantly greater during the aligned condi-
tion (5.5%) than during the misaligned condition (2.0%;
p < 0.005). Thus, the behavioral effect of FEF stimulation
was similar to the neural effect: in both cases the syn-
ergy between visual and electrical stimulation depended
on the alignment of the visual stimulus with the activated
FEF representation.

Although conditions with single RF stimuli were cate-
gorized as either aligned or misaligned with the evoked
saccade endpoint, across experiments there was a con-
siderable range in the separation between the two within
each category (aligned, 0°-4°; misaligned, 3°-13° Fig-
ure 4A). This variation allowed us to directly examine
the effect of saccade endpoint-RF stimulus separation
on the magnitude of response enhancement for the
population of V4 neurons (Figure 4B). For each cell, we
computed the stimulation-driven enhancement by sub-
tracting the normalized control response from the
normalized response following microstimulation. This
revealed a negative correlation between enhancement
and the separation between the saccade endpoint and
the RF stimulus (r = —0.33; p < 0.005), indicating that en-
hancement decreased with increasing separation.

Effects with Pairs of RF Stimuli

The fact that FEF microstimulation alters responses
to single RF stimuli to favor the aligned location sug-
gests that stimulation reproduces the effect of voluntary

attention. However, there have been no studies examin-
ing how attentional modulation depends on the spatial
alignment of the locus of attention within the RF and
the visual stimulus. Moreover, the results with single
RF stimuli fail to provide a parallel to the most classic
effect of attention on V4 neurons, namely that attention
alters responses to pairs of RF stimuli in favor of the se-
lected stimulus (Moran and Desimone, 1985; Reynolds
et al., 1999). Therefore, we tested the effect of FEF mi-
crostimulation on V4 responses to pairs of simulta-
neously presented RF stimuli. As observed previously
(Moore and Armstrong, 2003), the stimulation-driven
enhancement observed with single aligned stimuli de-
pended on the effectiveness of the RF stimulus. That
is, for the population of neurons, there was a positive
correlation between the effect of microstimulation and
the magnitude of the initial visual response to the
aligned stimulus (r = 0.27; p < 0.007). However, for the
same neurons, when two stimuli appeared in the RF,
the effect of microstimulation was not predicted by the
magnitude of the onset response to the aligned stimulus
(r=0.17; p > 0.09). Thus the impact of FEF stimulation on
responses to pairs of RF stimuli was altered by the pres-
ence of the second RF stimulus. Nevertheless, the RF
changes observed during single stimulus conditions
suggest that FEF stimulation might modulate V4 re-
sponses to stimulus pairs in a manner similar to that ob-
served during covert attention.

When two unattended stimuli appear together within
a neuron’s RF, one preferred and one nonpreferred,
the response to the pair falls approximately between
the responses elicited when the stimuli appear indi-
vidually, revealing the suppressive influence of the
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nonpreferred stimulus on the preferred stimulus re-
sponse (Miller et al., 1993; Reynolds et al., 1999; Zoccolan
et al., 2005). We observed V4 responses to pairs of stimuli
that confirm this finding. Late responses of an ex-
ample V4 neuron to pairs of simultaneously presented
stimuli are shown in Figure 5A. Control responses fell
between the responses to preferred and nonpreferred
stimuli presented individually. However, as observed
during directed attention, FEF stimulation altered the
pair response to reflect whether the preferred or nonpre-
ferred stimulus was aligned with the saccade endpoint.
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vertical error bars indicate the SEM separa-
tion and SEM enhancement, respectively).
Data points for each neuron are colored ac-
cording to the mean enhancement of the bin
to which they belong.

To study the effect of microstimulation on competitive
interactions for the population, we employed the same
analysis previously used to measure the impact of
voluntary attention on V4 responses to multiple RF stim-
uli (Reynolds et al., 1999). It examines how well neural
responses to pairs of RF stimuli are predicted by
aweighted average of the singleton responses. Stimulus
selectivity (SE) indices quantify how each neuron
responds to two distinct test stimuli presented individu-
ally at aligned and misaligned RF locations and can
range from —1 (prefers the misaligned stimulus) to +1

Figure 5. Effect of FEF Microstimulation on
V4 Neuronal Responses to Pairs of RF Stimuli

(A) Responses of an example V4 neuron to
pairs consisting of a preferred (P) and a non-
o preferred (N) stimulus. Control responses
OG" g™ 00 (black) typically fell between the responses
o’ evoked by each stimulus presented alone.
Mean singleton responses, which are the
average of responses at the aligned and mis-
aligned location, are indicated by the dotted
lines. FEF stimulation altered the pair re-
sponse to reflect whether the preferred or
nonpreferred stimulus was aligned with the
saccade endpoint. Error bars denote SEM.
(B) Selectivity indicates whether responses
are greater to the aligned or misaligned stim-
ulus. Sensory interaction indices quantify
how responses to the misaligned stimulus
are affected by the addition of the aligned
stimulus during the pair condition. During
the control conditions (black), responses to
the aligned and misaligned stimuli were aver-
aged with equal weighting to yield the re-
sponse to the pair, resulting in a linear rela-
tionship between sensory interaction and
selectivity with a slope of 0.52 (black line).
Following FEF stimulation (red), V4 re-
sponses to the pair of stimuli favored the spa-
tially aligned stimulus, increasing the slope
of the sensory interaction-selectivity relation-
ship to 0.72 (red line).
(C) The difference in the sensory interaction
index (microstimulation minus control) is
plotted as a function of the selectivity index.
There is a positive relationship between the
effect of microstimulation during pair condi-
tions and stimulus selectivity.
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(prefers the aligned stimulus). Sensory interaction indi-
ces (Sleontro) measure the added impact of the spatially
aligned stimulus on the response to the misaligned stim-
ulus during the pair condition. Like the SE index, the
Slcontror index ranges from —1 to +1, with negative values
indicating that the neuron’s response to the pair was
smaller than the response to the misaligned stimulus
alone and positive values indicating that the pair re-
sponse was greater. If responses to aligned and mis-
aligned stimuli are equally weighted during the pair con-
dition, the relationship between Sl .+, and SE indices
should be positive with a slope of 0.5 (Reynolds et al.,
1999). A linear regression for the sample of V4 neurons
(Figure 5B) showed a correlation between the Slcontror
and SE indices (r = 0.60; p < 0.0001), and the slope of
the best-fit line did not differ from 0.5 (slope = 0.52 =
0.07 [SEM]; t test, p> 0.5). Furthermore, the intercept
was not different from zero (intercept = 0.01 = 0.03).
Thus, in control conditions, responses to the aligned
and misaligned stimuli appear to be averaged with equal
weight to yield the response to the pair.

The effect of attention on responses to pairs of RF
stimuli is to increase the weight of the attended stimulus
and to decrease the influence of the distractor in driving
the pair response (Moran and Desimone, 1985; Reynolds
et al., 1999). In order to test whether FEF microstim-
ulation has a similar effect, we computed an additional
sensory interaction index for the pair condition following
microstimulation (Slgm,) (Figure 5B). As with the control,
there was a correlation between Slg;;,, and SE (r = 0.70;
p < 0.0001). However, in contrast to the control condi-
tion, the slope of the linear fit was significantly greater
than 0.5 (slope = 0.72 = 0.08, p < 0.01). This change in
slope shows an increased weighting of the aligned RF
stimulus in driving the pair response and closely matches
the effect observed during voluntary attention (Reynolds
et al., 1999). The increase in slope reflects the fact that
the effect of microstimulation during the pair condition,
as measured by the change in Sl, was positively corre-
lated with SE (r = 0.25; p < 0.02) (Figure 5C). There was
also an increase in the y intercept above 0 (intercept =
0.09 + 0.04; p < 0.05). Such an increase was also ob-
served in V4 responses recorded in monkeys trained to
selectively attend to one RF stimulus and is believed to
reflect a global increase in firing rate under attention
(Reynolds et al., 1999), or in this case, following FEF
microstimulation. The increase in slopes observed with
microstimulation and attention demonstrates that both
alter visual responses to favor the selected stimulus. In
fact, with stimulus pairs, we found that following micro-
stimulation, the responses of significantly tuned neurons
signaled whether the preferred or nonpreferred stimulus
was at the aligned location (paired t test, p < 0.002; n =
17), whereas the control responses did not (p > 0.19).
This observation parallels the effects of attention on V4
response as measured during covert attention tasks
(Luck et al., 1997; Moran and Desimone, 1985; Reynolds
and Desimone, 2003; Reynolds et al., 1999) as well as
tasks in which monkeys make saccades (i.e., overtly
attend) to one of two competing RF stimuli (Chelazzi
et al., 2001). Our results suggest a mechanism by which
interactions between multiple receptive field stimuli
are modulated according to incipient saccade plans,
whether or not those plans are carried out.

Fixational Stability Following Microstimulation
Several studies have reported an influence of fixational
saccades, or microsaccades, on the responses of neu-
rons in visual cortex, including area V4 (Bair and O’Keefe,
1998; Leopold and Logothetis, 1998). It is therefore im-
portant to consider the possibility that FEF microstimula-
tion exerts effects on V4 responses indirectly via distur-
bances in fixational stability. Indeed, we have previously
observed that even subthreshold FEF microstimulation
destabilizes gaze (Moore and Fallah, 2004). Although
the results expected from a simple destabilization of
gaze following microstimulation are not consistent with
the observed dependence of the enhancement on RF
stimulus alignment or with the response changes seen
with stimulus pairs (i.e., gaze destabilization should
cause enhancement in all conditions), we nonetheless
sought to determine its possible influence on the post-
stimulation activity we studied. The frequency of micro-
saccades (>0.1° in amplitude) was measured before
and after the time of microstimulation for both control
and stimulation trials. We found a measurable increase
in the frequency of microsaccades on stimulation trials
(1.33 microsaccades/sg;,, versus 0.97 microsaccades/
Scontrol) that lasted for ~100 ms (see Figure S1 in the
Supplemental Data available with this article online).
However, this increase in microsaccade frequency be-
gan ~ 95 ms after stimulation onset. Given that the short-
est visual latencies in area V4 are >50 ms (Nowak and
Bullier, 1997), any influence of added microsaccades
on V4 responses should occur >145 ms following micro-
stimulation onset and beyond the extent of our analysis
window (<135 ms post-stimulation). Thus, the disrup-
tion in fixational stability could not have affected neural
activity during the analysis window.

In addition, we also verified that differences in abso-
lute gaze position could not have contributed to the mi-
crostimulation effects we observed. We compared the
median fixational position difference between the simu-
lation and control conditions for both monkeys during
a 120 ms time period beginning 100 ms before the start
of the 70 ms V4 activity-analysis window and ending 20
ms into it. This offset was chosen to account for both
the approximate maximum and minimum latencies of
V4 visual responses, respectively (Nowak and Bullier,
1997). In both animals, the median difference in gaze po-
sition between stimulation and control conditions was
<0.02° and thus could not have contributed to the ob-
served effects of microstimulation.

Discussion

Microstimulating the FEF could recruit a number of dif-
ferent neural pathways. The FEF contains neurons ex-
hibiting a range of functional properties (Bruce, 1990)
and projecting to a diverse set of brain regions (Stanton
et al., 1995). Stimulus selection might have resulted from
electrically activating neurons in the FEF that project
directly to area V4 (Stanton et al., 1995). However, the
FEF also contains neurons that project to area LIP
(Stanton et al., 1995), the SC (Sommer and Wurtz, 2000),
and the pulvinar nucleus of the thalamus (Huerta et al.,
1986), and there is a growing body of evidence impli-
cating these areas in the control of covert attention (Bisley
and Goldberg, 2003; Bushnell et al., 1981; Cavanaugh and
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Wurtz, 2004; Kustov and Robinson, 1996; McPeek and
Keller, 2004; Muller et al., 2005; Petersen et al., 1987).
Therefore, it is plausible that visual selection resulted
from the orthodromic activation of neurons in these
areas, all of which project mono- or disynaptically to
area V4 and, thus, are capable of influencing activity in
that area (Andersen et al., 1990; Barbas and Mesulam,
1981; Ferraina et al. 2002; Lynch et al., 1994; Shipp,
2004). Because these visuooculomotor areas are recip-
rocally connected, a unique role of the FEF during volun-
tary attention is not easily inferred. Furthermore, electri-
cal stimulation directly activates not only the cell bodies
of FEF neurons but all other elements, including axon
terminals (Tehovnik, 1996), so we cannot rule out a
role of neurons in other structures with inputs to the
FEF. This raises the question of whether the FEF itself
is necessary for visual selection. The conclusion that
the voluntary deployment of spatial attention originates
in the FEF would be consistent with the behavioral ef-
fects of lesions and inactivation (Sommer and Tehovnik,
1997; Welch and Stuteville, 1958), with current views of
prefrontal cortical function (Miller and Cohen, 2001),
and with the demonstrated willful control of neural activ-
ity within motor cortices (Fetz and Finocchio, 1971).
However, future experiments will need to determine if
the activity of FEF neurons per se drives spatial attention
and its correlates in visual cortex. Nonetheless, results
to date show that FEF stimulation modulates RFs in
amanner that, so far, is physiologically indistinguishable
from voluntarily directed attention.

Experimental Procedures

General and Surgical Procedures

Two male rhesus monkeys (Macaca mulatta, 5 and 7 kg) were used
in these experiments. All experimental procedures were in accor-
dance with National Institutes of Health Guide for the Care and
Use of Laboratory Animals, the Society for Neuroscience Guidelines
and Policies, and Stanford University Animal Care and Use Commit-
tee. General experimental and surgical procedures have been de-
scribed previously (Graziano et al., 1997). Each animal was surgically
implanted with a head post, a scleral eye coil, and two recording
chambers. Surgery was conducted using aseptic techniques under
general anesthesia (isoflurane) and analgesics were provided during
postsurgical recovery. Two craniotomies were performed on each
animal, allowing access to dorsal V4, on the prelunate gyrus, and
FEF, on the anterior bank of the arcuate sulcus.

Visual Stimuli and Behavioral Task
Monkeys were trained to fixate within a 3° diameter error window
surrounding a central spot. Two hundred and fifty milliseconds
following fixation, oriented bar stimuli (1.4°-3.5° x 0.3°-0.9°) were
presented for 1 s at locations both inside and outside the RF of
a V4 neuron under study. Subthreshold microstimulation of an FEF
site was applied 500 ms after the appearance of the visual stimuli
on half of the trials. Monkeys were required to maintain fixation
throughout the course of visual stimulus presentation and only cor-
rectly completed trials were included in the analyses. Throughout all
experiments, eye position was monitored with a scleral search coil
and digitized at 200 Hz. All visual stimulus and microstimulation con-
ditions were pseudorandomly interleaved and were controlled by
the Cortex system for data acquisition and behavioral control.
Responses to two oriented bar stimuli (0°, 45°, 90°, or 135°) were
examined during each experiment, and on each trial visual stimuli
were presented to the RF either individually or as a pair. Stimuli
could be presented at two positions within the RF: either at the end-
point of the saccade that could be evoked with suprathreshold FEF
stimulation (the aligned position), at another position (the misaligned
position), or at both positions simultaneously. The misaligned posi-

tion was chosen to maximize the separation between the two stim-
uli, while still evoking a reliable response from the V4 neuron. Each
RF stimulus was also presented at the mirror-image location in the
ipsilateral hemifield on every trial, since the effects of FEF stimula-
tion have been shown to be greatest in the presence of “distracter”
stimuli outside the RF (Moore and Armstrong, 2003). Stimulus pairs
were most often two grayscale bars of orthogonal orientation (~0.90
Michaelson contrast), but occasionally the pair consisted of two
bars of the same orientation but different colors (0.68-0.92 Michael-
son contrast). The experimenter attempted to select two test-stimuli
that varied in their ability to evoke V4 responses, but stimulus tuning
was not characterized before carrying out an experiment. All visual
stimuli were displayed on an LCD monitor (52 cm vertical x 87 cm
horizontal, 60 Hz) positioned 57 cm in front of the monkey, with
a background illumination of 3.55 cd/m2 Ambient illumination in
the experimental room was 0.902 cd/m?2.

Single-Neuron Recording in V4

Single-neuron recordings in awake monkeys were made through
a surgically implanted cylindrical titanium chamber (20 mm diame-
ter) overlaying the prelunate gyrus. Electrodes were lowered into
the cortex using a hydraulic microdrive (Narashige). Activity was re-
corded extracellularly with varnish-coated tungsten microelec-
trodes (FHC) of 0.2-1.0 MQ impedance (measured at 1 KHz). Extra-
cellular waveforms were digitized and classified as single neurons
using both template-matching and window-discrimination tech-
niques (FHC, Plexon). V4 neuron receptive fields were mapped in
a separate behavioral paradigm in which oriented bars were swept
across the display while the monkey fixated. The RFs of V4 neurons
studied were in the lower contralateral visual field with eccentricities
between 8° and 16°.

Electrical Microstimulation of the FEF

Electrical microstimulation consisted of a 30-50 ms train of biphasic
current pulses (0.25 ms, 200 Hz) delivered with a Grass stimulator
(S88) and two Grass stimulation isolation units (PSIU-6). Current
amplitude was measured via the voltage drop across a 1 kQ resistor
in series with the return lead of the current source. All stimulation
was delivered via varnish-coated tungsten microelectrodes of 0.2-
1.0 MQ impedance (measured at 1 KHz). In each monkey, the FEF
was first localized on the basis of its surrounding physiological
and anatomical landmarks and the ability to evoke fixed-vector, sac-
cadic eye movements with stimulation at currents of less than 50 pA
(Bruce et al., 1985). During each experimental session, we mapped
the saccade vector elicited at the cortical site under study with the
use of a separate behavioral paradigm (Moore and Fallah, 2001). In
this paradigm, the monkey was required to fixate on a visual stimu-
lus (1.2° square) for 500 ms, after which time a 100 ms stimulation
train was delivered on half the trials. For each trial, the visual stimu-
lus was positioned at one of five positions, one at the center of gaze
and one 10°-13° from center along each cardinal direction. The stim-
ulating electrode was advanced until sites were localized from which
saccades could be evoked into the RF of the V4 neuron under study
and the current threshold for evoking saccades was measured for
this site. Experimental currents were set to 50% of the site’s thresh-
old (Moore and Armstrong, 2003; Moore and Fallah, 2004; Moore
and Fallah, 2001).

Analyses

All analyses of the effects of FEF stimulation on V4 responses were
conducted on a 70 ms time window beginning 15 ms after the offset
of stimulation. This window was chosen to avoid contamination
with the stimulation artifact and to avoid any indirect effects of dis-
turbances in fixation on visual responses that resulted from stimula-
tion. Each neuron’s activity was averaged during this window and
normalized by dividing by the largest average response for that neu-
ron. During the analysis of competitive interactions between visual
stimuli, normalized V4 responses were computed in six stimulus
configurations: (1 and 2) stimulus 1 and stimulus 2 appearing alone
at the aligned position, (3 and 4) stimulus 1 and stimulus 2 appearing
alone at the misaligned position, and (5 and 6) stimulus 1 and stim-
ulus 2 presented simultaneously at the aligned and misaligned, or
the misaligned and aligned positions, respectively, and these re-
sponses were used to compute selectivity and sensory-interaction
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indices. SE indices were computed by taking the difference between
normalized responses to the first test stimulus at the spatially
aligned position and the second test stimulus at the spatially mis-
aligned position (test 1,gned — test 2misaiigned), and vice versa (test
2aiigned — test 1pisaiigned), Yielding two SE indices for each neuron.
The sensory-interaction index (Slcontro) is the difference between
the normalized response to the pair and the normalized response
to the misaligned stimulus alone during control conditions. Sl is
the difference between the pair response following stimulation and
the response to the spatially misaligned stimulus alone during con-
trol trials. All analyses were performed on the combined population
of neurons from monkey W and monkey B, as stimulation-driven
enhancement effects were statistically indistinguishable between
the two animals (t test on response enhancement to preferred stimuli
in the aligned condition). A criterion level of p < 0.05 was used in all
statistical analysis.

Microsaccades

Microsaccades coinciding with microstimulation were detected off-
line using an iterative algorithm based on the intersection of a veloc-
ity threshold, an amplitude threshold, and statistically significant de-
flections in the x or y position. The velocity threshold flagged time
points at which the instantaneous velocity was above 10 deg/s for
a minimum of 10 ms (Bair and O’Keefe, 1998). Two moving windows
of 50 ms separated by 25 ms were iterated in 5 ms steps over the
x and y components of eye position. At each step, a two sample
Kolmogorov-Smirnov test (p < 0.01) compared the x and y compo-
nents of the two periods. If either the x or y component differed sig-
nificantly, the time point at the end of the first window was marked.
The amplitude of each eye movement was approximated by the dis-
placement of the median x and y components between the two win-
dows. Points with amplitudes >0.1° were flagged (Bair and O’Keefe,
1998). The first of consecutive time points which passed all three cri-
teria was considered a saccade start time. Successive saccades
were constrained to start a minimum of 50 ms after any previous
saccade.

Supplemental Data
Supplemental Data for this article can be found online at http://www.
neuron.org/cgi/content/full/50/5/791/DC1/.
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